Spatial–Temporal Characteristics of Precipitation and Its Relationship with Land Use/Cover Change on the Qinghai-Tibet Plateau, China | Land Portal

Información del recurso

Date of publication: 
Marzo 2021
Resource Language: 
ISBN / Resource ID: 
License of the resource: 
Copyright details: 
© 2021 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article.

The Qinghai-Tibet Plateau (QTP) is an area sensitive to global climate change, and land use/land cover change (LUCC) plays a vital role in regulating climate system at different temporal and spatial scales. In this study, we analyzed the temporal and spatial trend of precipitation and the characteristics of LUCC on the QTP. Meanwhile, we also used the normalized difference vegetation index (NDVI) as an indicator of LUCC to discuss the relationship between LUCC and precipitation. The results show the following: (1) Annual precipitation showed a fluctuant upward trend at a rate of 11.5 mm/decade in this area from 1967 to 2016; three periods (i.e., 22 years, 12 years, and 2 years) of oscillations in annual precipitation were observed, in which expectant 22 years is the main oscillation period. It was predicted that QTP will still be in the stage of increasing precipitation. (2) The LUCC of the plateau changed apparently from 1980 to 2018. The area of grassland decreased by 9.47%, and the area of unused land increased by 7.25%. From the perspective of spatial distribution, the transfer of grassland to unused land occurred in the western part of the QTP, while the reverse transfer was mainly distributed in the northwestern part of the QTP. (3) NDVI in the northern and southwestern parts of the QTP is positively correlated with precipitation, while negative correlations are mainly distributed in the southeast of the QTP, including parts of Sichuan and Yunnan Province. Our results show that precipitation in the QTP has shown a fluctuating growth trend in recent years, and precipitation and NDVI are mainly positively correlated. Furthermore, we hope that this work can provide a theoretical basis for predicting regional hydrology, climate change, and LUCC research.

Autores y editores

Author(s), editor(s), contributor(s): 

Zhang, Bo
Zhou, Wei


Proveedor de datos

Comparta esta página