Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model | Land Portal

Resource information

Date of publication: 
April 2020
Resource Language: 
ISBN / Resource ID: 
License of the resource: 
Copyright details: 
© 2020 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article.

Inappropriate land management leads to soil loss with destruction of the land’s resource and sediment input into the receiving river. Part of the sediment budget of a catchment is the estimation of soil loss. In the Ruzizi catchment in the Eastern Democratic Republic of the Congo (DRC), only limited research has been conducted on soil loss mainly dealing with local observations on geomorphological forms or river load measurements; a regional quantification of soil loss is missing so far. Such quantifications can be calculated using the Universal Soil Loss Equation (USLE). It is composed of four factors: precipitation (R), soil (K), topography (LS), and vegetation cover (C). The factors can be calculated in different ways according to the characteristics of the study area. In this paper, different approaches for calculating the single factors are reviewed and validated with field work in two sub-catchments of Ruzizi River supplying the water for the reservoirs of Ruzizi I and II hydroelectric dams. It became obvious that the (R)USLE model provides the best results with revised R and LS factors. C factor calculations required to conduct a supervised classification using the Maximum Likelihood Procedure. Different C factor values were assigned to the land cover classes. The calculations resulted in a soil loss rate for the predominantly occurring Ferralsols and Leptosols of around 576 kt/yr in both catchments, when 2016 landcover and precipitation are used. This represents an area-normalized value of 40.4 t/ha/yr for Ruzizi I and 50.5 t/ha/yr for Ruzizi II due to different landcover in the two sub-catchments. The mean value for the whole study area is 47.8 t/ha/yr or even 27.1 t/ha/yr when considering land management techniques like terracing on the slopes (P factor). This work has shown that the (R)USLE model can serve as an easy to handle tool for soil loss quantification when comprehensive field work results are sparse. The model can be implemented in Geographic Information Systems (GIS) with free data; hence, a validation is crucial. It becomes apparent that the use of high resolution Sentinel 2a MSI data as the basis for C factor calculations is an appropriate method for considering heterogeneous Land Use Land Cover (LULC) patterns. To transfer the approach to other regions, the calculation of factor R needs to be modified.

Authors and Publishers

Author(s), editor(s), contributor(s): 

Eisenberg, Joachim
Muvundja, A. Fabrice


Data provider