Reducing Octane Number Loss in Gasoline Refining Process by Using the Improved Sparrow Search Algorithm | Land Portal

Informações sobre recurso

Date of publication: 
Janeiro 2023
Resource Language: 
ISBN / Resource ID: 
LP-midp002174
Copyright details: 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article

Gasoline is the primary fuel used in small cars, and the exhaust emissions from gasoline combustion have a significant impact on the atmosphere. Efforts to clean up gasoline have therefore focused primarily on reducing the olefin and sulfur content of gasoline, while maintaining as much of the octane content as possible. With the aim of minimizing the loss of octane, this study investigated various machine learning algorithms to identify the best self-fitness function. An improved octane loss optimization model was developed, and the best octane loss calculation algorithm was identified. Firstly, the operational and non-operational variables were separated in the data pre-processing section, and the variables were then filtered using the random forest method and the grey correlation degree, respectively. Secondly, octane loss prediction models were built using four different machine learning techniques: back propagation (BP), radial basis function (RBF), ensemble learning representing extreme gradient boosting (XGboost) and support vector regression (SVR). The prediction results show that the XGboost model is optimal. Finally, taking the minimum octane loss as the optimization object and a sulfur content of less than 5µg/g as the constraint, an octane loss optimization model was established. The XGboost prediction model trained above as the fitness function was substituted into the genetic algorithm (GA), sparrow search algorithm (SSA), particle swarm optimization (PSO) and the grey wolf optimization (GWO) algorithm, respectively. The optimization results of these four types of algorithms were compared. The findings demonstrate that among the nine randomly selected sample points, SSA outperforms all other three methods with respect to optimization stability and slightly outperforms them with respect to optimization accuracy. For the RON loss, 252 out of 326 samples (about 77% of the samples) reached 30%, which is better than the optimization results published in the previous literature.

Autores e editores

Author(s), editor(s), contributor(s): 

Chen, JianZhu, JiajunQin, XuXie, Wenxiang

Corporate Author(s): 
sustainability-logo.png

 

Sustainability (ISSN 2071-1050; CODEN: SUSTDE) is an international, cross-disciplinary, scholarly and open access journal of environmental, cultural, economic, and social sustainability of human beings. Sustainabilityprovides an advanced forum for studies related to sustainability and sustainable development, and is published monthly online by MDPI. 

Sustainability is an Open Access journal.

    Publisher(s): 

    MDPI AG, a publisher of open-access scientific journals, was spun off from the Molecular Diversity Preservation International organization. It was formally registered by Shu-Kun Lin and Dietrich Rordorf in May 2010 in Basel, Switzerland, and maintains editorial offices in China, Spain and Serbia. MDPI relies primarily on article processing charges to cover the costs of editorial quality control and production of articles. Over 280 universities and institutes have joined the MDPI Institutional Open Access Program; authors from these organizations pay reduced article processing charges.

    Provedor de dados

    MDPI AG, a publisher of open-access scientific journals, was spun off from the Molecular Diversity Preservation International organization. It was formally registered by Shu-Kun Lin and Dietrich Rordorf in May 2010 in Basel, Switzerland, and maintains editorial offices in China, Spain and Serbia. MDPI relies primarily on article processing charges to cover the costs of editorial quality control and production of articles. Over 280 universities and institutes have joined the MDPI Institutional Open Access Program; authors from these organizations pay reduced article processing charges.

    Compartilhe esta página